
Benjamin Ryan
CS 4204 Final Project

The Obra-Engine

What is the Obra-Engine?

Expanded on the graphics engine we created in class by
adding:

1. Shadow Mapping
2. Dithering
3. '1-bit' Monochrome Graphics

Inspired by 'Return of the Obra Dinn' by Lucas Pope

Code Additions
Ditherer Class ShadowMapper Class Image Class

@staticmethod
rgb_to_grayscale()

@staticmethod
ordered_dithering()

self.screen
self.light
self.meshes

render_shadow_map()

barycentric()

debug_shadow_buffer(
)

@staticmethod
save_as_bmp

@staticmethod
save_as_gif

Code Changes
Renderer Class

__init__(self,screen,camera,meshes,light,shadow_mapper=None)

render(self, shading, bg_color, ambient_light, dither=None)

PointLight Class

self.camera

Shadow Mapping
How I did it

ShadowMapper class has its own render loop
which returns a buffer to the Renderer
before it enters its own render loop.

render_shadow_map basically uses the extra
credit assignment with the “depth” shading

Per pixel, determine if it is in_shadow by
interpolating the pixel from camera-space back
to world-space to the light-space and check the
value of shadow_buffer[x, y]

Challenges I ran into

Shadow Acne is nothing to joke about! It is just like acne;
annoying and hard to get rid of. Fixes:
1. Instead of culling the back triangles, cull the front triangles
2. Add bias
(Both improved getting rid of most of the shadow acne but
normal culling resulted in strange artifacts sometimes)

Shadows were clipped by near/far planes due to depth
Fix: I would not include the meshes that would have shadows
cast onto them in the list of meshes rendered by the ShadowMapper

We used Point Lights which do not have direction. In actual
shadow mapping with point lights you use a cubemap composed
of 6 shadow maps. Doing this or creating a new Light class was
out of scope for this project. Fix: Assign a camera to PointLight

Shadow Mapping

+ =

*Note: In order to fully appreciate shadows, I had to create ‘background’ meshes in Blender to cast onto

Shadow Mapping

+ =

*Note: In order to fully appreciate shadows, I had to create ‘background’ meshes in Blender to cast onto

Dithering

Dithering is a practice where you intentionally apply noise to images
There are many different dithering methods. I was between implementing Blue Noise or
Ordered dithering since both are used in ‘Return of the Obra Dinn’.

Blue Noise - random noise with higher frequencies having higher intensities

Ordered Dithering - a set structured threshold map of values

I opted for the latter method and used Bayer Matrices since it would be simple to implement
in our pipeline since it is just another matrix multiplication to do.

Ordered Dithering
The most common methods of Ordered Dithering
is using a ‘dither map’ or a Bayer Matrix.

Algorithm:
Convert rgb buffer into grayscale of their lumininance
grayscale buffer = rgb_buffer * [0.299, 0.587, 0.114]

Determine if the luminance/grayscale value is above or below Bayer
Matrix threshold
bayer_matrix = np.array([

[0, 32, 8, 40, 2, 34, 10, 42],
[48, 16, 56, 24, 50, 18, 58, 26],
[12, 44, 4, 36, 14, 46, 6, 38],
[60, 28, 52, 20, 62, 30, 54, 22],
[3, 35, 11, 43, 1, 33, 9, 41],
[51, 19, 59, 27, 49, 17, 57, 25],
[15, 47, 7, 39, 13, 45, 5, 37],
[63, 31, 55, 23, 61, 29, 53, 21]

]) / 64.0

Ordered Dithering
The most common methods of Ordered Dithering
is using a ‘dither map’ or a Bayer Matrix.

Algorithm:
Convert rgb buffer into grayscale of their lumininance
grayscale buffer = rgb_buffer * [0.299, 0.587, 0.114]

Determine if the luminance/grayscale value is above or below Bayer
Matrix threshold
bayer_matrix = np.array([

[0, 32, 8, 40, 2, 34, 10, 42],
[48, 16, 56, 24, 50, 18, 58, 26],
[12, 44, 4, 36, 14, 46, 6, 38],
[60, 28, 52, 20, 62, 30, 54, 22],
[3, 35, 11, 43, 1, 33, 9, 41],
[51, 19, 59, 27, 49, 17, 57, 25],
[15, 47, 7, 39, 13, 45, 5, 37],
[63, 31, 55, 23, 61, 29, 53, 21]

]) / 64.0

It really is 1-bit!

Ordered Dithering

Ordered Dithering

Image Processing

I wrote an Image class which transforms a numpy array into a bitmap (.bmp) file
def save_as_bmp(filename, array)

because I experienced a strange glitch where Pygame would “flicker” with the binary

images and the saved photos would not actually be monochromatic.

I also wrote a function which transforms a list of bitmap file names into a GIF (.gif) file
def save_as_gif(bmp_files, filename, duration)

This allows me to make super cool “animations” showcasing the full extent of the

dithering and shadow mapping in the Obra Engine.

Performance

21.427394 seconds21.306721 seconds13.480632 seconds5.090437 seconds

T
ea

po
t

D
ep

th

28.612639 seconds28.480489 seconds19.510748 seconds2.205572 seconds

Grand Reveal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Shadow Mapping
	Slide 6: Shadow Mapping
	Slide 7: Shadow Mapping
	Slide 8: Dithering
	Slide 9: Ordered Dithering
	Slide 10: Ordered Dithering
	Slide 11: Ordered Dithering
	Slide 12: Ordered Dithering
	Slide 13: Image Processing
	Slide 14: Performance
	Slide 15
	Slide 16

