VR Rendering (Real)

Faye Nguyen



Recap

v

- Implement IPD Xd =Xu (koffset +k0r0 +k17‘1 e "'+k6T6)
- Distort using Brown-Conrad’s Distortion Model Y= Y. (oppee + kor® + kurt + -+ ker®)

(24, ya) = distorted image point as projected on image plane using specified lens
(zu, yu) = undistorted image point as projected by an ideal pin-hole camera



IPD Methods

- Two cameras with an X-position offset (to mimic eyes)

- Trouble: No sense of scale from millimeters to numbers in renderer. I have to
guess the distance.

- In code, rendered the two images on top of each other, then one result is
shoved by an offset-amount (the right camera’s render)




IPD Methods

- Two cameras with an X-position offset (to mimic eyes)

- Trouble: No sense of scale from millimeters to numbers in renderer. I have to
guess the distance.

- In code, rendered the two images on top of each other, then one result is
shoved by an offset-amount (the right camera’s render)




Eyesight Class

Sets up L/R Cams using original position of camera

def setup cams(self, IPD):

transtormLeft = Transtorm()
transtormLeft.set position(-IPD/2, @, ©)
transformRight = Transform()
transtormRight.set position(IPD/2, ©, ©)

cam L = PerspectiveCamera(self.left, self.right, self.bottom, self.top, self.near, self.far)
trans L = self.transform.get position() + transformLeft.get position()
cam_L.transform.set position(trans L[®], trans L[1], trans L[2])

cam R = PerspectiveCamera(self.left, self.right, self.bottom, self.top, self.near, self.far)
trans R = self.transform.get position() + transformRight.get position()
cam_R.transform.set position(trans R[®], trans R[1], trans R[2])

return (cam L, cam R)




Render Loop Addition

def render VR(self, shading, bg color, ambient light):
image buffer = np.full((2*self.screen.width, self.screen.height, 3), bg color)
offset = @
counter = 1

" Per Camera Lighting''’
for camera in self.eyesight.cams:

depth buffer = np.full([2*self.screen.width, self.screen.height, 1], -np.inf, dtype=float)
self.render grids(offset, image buffer)

loading statement = "Loading Left Eye" if (offset == 8) else "Loading Right Eye"
print(loading_statement)

for mesh in self.meshes:
print(“Loading mesh", counter, "of", len(self.meshes * 2))

counter += 1




Distortion Methods

- Couldn't find coefficient values online. Had to use profiler to manually guess
the correct coefficients. Probably not right, but close enough.

- Distortion coefficients from profiler were on a totally different scale
- and not negative (negative coefficients are used for barrel distortions)

Tray to lens-center distance (mm)

. Xa =Xy (kofpset + kot® + ka1t + - + kgr®)

Yo =Yy (kogppser + kor® + ka1t + -+ + ker®)

Distortion coefficients
ki| 0.260

(xd, yd) = distorted image point as projected on image plane using specified lens
kz| 0.390 (zu, yu) = undistorted image point as projected by an ideal pin-hole camera

[-0.00000260, -0.00000390, 0, 0, 0, 0]




Distortion (2) Method

-  Couldn’t make Brown-Conrady model work for some reason

- Used the Reverse Distortion model instead

- Required only 1 coefficient to make things convenient
- However, less accurate. But good enough

mu _mc T

g =2 + ———— (1 — /1 — 4K, 72
C 2}(1?% ( \/ 1 u)

- Yn — Ye 3
Ya = Yo + (1_ \/1_4K1T14)1

2K1T‘3




Rendering Addition

(x d, y d) = self.reverse distortion(x + offset, y, MIDPOINTS[@] + offset, MIDPOINTS[1])
image buffer[x d, y d] = |
int(RED[®] * irradiance[e]),
int(GREEN[1] * irradiance[1]),
2] ° 2]

int (BLUE[ irradiance[2])

image_buffer[x + offset,y] =
print(“Lighting Equation Error™)




Distortion Equation

def reverse distortion(self, x, y, x ¢, y ¢):
dist x = (x - x C)
dist y = (y - y c)

r = np.sqrit((dist x ** 2) + (dist y ** 2))
if (r == 0.0):

r = 9.6000000001
term 2x = dist x / (2 * KTH[@] * (r ** 2))
term 2y = dist y / (2 * KTH[@] * (r ** 2))
term 3 = (1 - np.sqrt(1 - (4 * KTH[@] * (r *

9
9

X ¢ + (term 2x * term_3)
y ¢ + (term 2y * term_3)

return (int(x d), int(y d))




Funny Renders




Final Deliverable

I actually added in the grid for debugging, but it’s also good to verify that the lines are horizontal in
the viewer. It also makes it hurt less (to me)



Final Remarks: What could be better

IPD
- Better IPD adjustment

Distortion

- Get exact coefficients from Google API's get_distortion_coefficients()
- Factor in other variables (screen-to-lens, tray-to-lens)

Google Cardboard

- super glue
Phone

- screen protector



	Slide 1: VR Rendering (Real)
	Slide 2: Recap
	Slide 3: IPD Methods
	Slide 4: IPD Methods
	Slide 5: Eyesight Class
	Slide 6: Render Loop Addition
	Slide 7: Distortion Methods
	Slide 8: Distortion (2) Method
	Slide 9: Rendering Addition
	Slide 10: Distortion Equation
	Slide 11: Funny Renders
	Slide 12: Final Deliverable
	Slide 13: Final Remarks: What could be better

