Textured Dreams

Nicholas Markle
CS 4204 Final Project

What did | do

i3 T

MY FINAL PROJECT WAS TO UVS ARE 2D COORDINATES DEFINE HOW TEXTURES ARE LEARNED HOW TO IMPLEMENT
IMPLEMENT UVS INTO THE USED TO MAP A 3D MODEL'S WRAPPED AROUND THE FROM THE LECTURE SLIDES AND
EXISTING GRAPHICS PIPELINE SURFACE TO A 2D TEXTURE MODEL. KEENAN CRANE’S VIDEO.

Texture coordinates

n “Texture coordinates” define a mapping from
surface coordinates to points in texture domain

u Often defined by linearly interpolating texture
coordinates at triangle vertices

Atexture on the [0,1]: domain can
be spedified by a 2048x2048 image

Suppose each cube face is split into eight triangles,
‘with texture coordinates (u,v) at each vertex

(0.0,1.0) (0.5,1.0) (1.0,1.0)

(0.0,0.5)

(0.0,0.0) (0.5,0.0) (1.0,0.0)

Linearly interpolating texture
coordinates & “looking up” color
in texture gives this image:

Texture Perspective

L ofvalues
sereen XY coardinates.

Project Point (perspective) tang

1. Apply Inverse of Camera Transform

2. Apply P

3. Divide by last element to apply
perspective scaling

4. Apply O

Texture Sampling 101

= Basic algorithm for texture mapping:
— for each pixel in the rasterized image:
- interpolate (u,v) coordinates across triangle
— sample (evaluate) texture at interpolated (u,v)
- set color of fragment to sampled texture value

...sadly not this easy in general!

Texture mapping adds detail

texture image

ahexture Perspective

= Goal: interpolate some attribute ¢ at vertices 10 = n- f
= Basicredpe: . _” -
= |Compute depth 2 at each Vertex |jr— j +n p .z
) !valwel:=1/zan¢£i’ ¢Intnd|vem; L
- Zand P using standard (20) barycentric coords
- Ateach fragment, divide Phy 7 |]
to get final value

 derivatisn, see Low, Perspective Comect nterpastion
> Pet—

What are UVs

Affine implementation

 Barycentric Coordinates: Calculate the texture coordinates (u and v) for the pixel
using barycentric interpolation (alpha, beta, gamma) based on the triangle's vertices.

 Clamping: Ensure u and v are within the valid texture bounds (0 to 1)
Texture Sampling: Sample the texture at the computed coordinates (u, v) and assign

the resulting color to the image buffer.
* Depth: Update the depth buffer with the interpolated depth value (z_interpolated).

Output from running Affine Implementation

Perspective Correct Implementation

* Inverse Depths: Calculate the inverse of the depth values (1/z0, 1/z1, 1/z2) for each triangle vertex.

 Depth Correction: Adjust the barycentric coordinates (alpha, beta, gamma) using the inverse depth
values to handle perspective correction (alpha_w, beta_w, gamma_w).

* Normalization: Normalize the corrected weights (alpha_w, beta_w, gamma_w).

* Perspective-Correct UV Calculation: Compute the corrected texture coordinates (u, v) by weighting
the UVs of each vertex based on the perspective-corrected barycentric coordinates.

* Clamping: Ensure the corrected texture coordinates are within valid bounds (0 to 1).

* Texture Sampling: Sample the texture at the corrected coordinates and assign the resulting color to
the image buffer.

 Depth: Update the depth buffer with the interpolated depth value (z_interpolated).

Didn’t quite get this working

Final Remarks

Affine Implementation
worked well

Perspective Correct

Implementation is a bit buggy

Wish | hadn’t been sick so
much this semester

	Slide 1: Textured Dreams
	Slide 2: What did I do
	Slide 3: What are UVs
	Slide 4: Affine implementation
	Slide 5: Output from running Affine Implementation
	Slide 6: Perspective Correct Implementation
	Slide 7: Didn’t quite get this working
	Slide 8: Final Remarks

