
Alpha Blending and 
Transparency

CS 4204
Shuban Sridhar



Goal

Objective was to produce transparency using alpha blending. Essentially, each object 
would have an additional property to represent its level of transparency, and additional 
methods for shading, depth ordering, and blending would have to be implemented to 
achieve the desired output.



Implementation
Step 1: Alpha Channel Support

Originally, we only stored RGB colors (red, green, blue). We 
extended this to RGBA by adding an alpha channel, where 1.0 
represents fully opaque and 0.0 represents fully transparent. This 
required changes to the Mesh class to store alpha values and pass 
them through the rendering pipeline.

Step 2: Depth Sort

For transparency to work correctly, we need to render objects in 
the correct order - from back to front (painter's algorithm). We 
implemented this by:

● Converting mesh vertices to camera space
● Calculating the average depth of each mesh
● Sorting meshes based on their depth
● Rendering them in order from farthest to nearest

This ensures that transparent objects properly show what's behind 
them.



Implementation Part 2
Step 3: Color Blending

We implemented alpha compositing, which is the mathematical 
process of combining transparent colors. The formula takes into 
account both the color and alpha values of the new color and the 
existing background color. This creates the illusion of 
transparency by properly mixing colors based on their alpha 
values

Step 4: Buffer Management

The rendering pipeline needed significant modifications to 
handle transparency:

● The image buffer was extended to include an alpha 
channel

● We maintained the buffer in floating-point format (0-1) 
during calculations for precision

● Only at the final display step did we convert back to 
8-bit RGB

● The z-buffer remained crucial for handling depth testing 
within individual meshes



Testing

● Set up viewport and camera
● Suzanne is placed furthest back (z=-1) and set as fully 

opaque (alpha=1.0)
● The cube is positioned closest to the camera (z=1.5) 

and made semi-transparent (alpha=0.5) to demonstrate 
the transparency effect

● The sphere is placed at a middle depth (z=0) with 
partial transparency (alpha=0.7)

Confirmation of depth-ordering:



Result
Here we see different levels of transparency and depths, along with 
how those attributes interact with the background. 

Expected areas of performance impact:

1. Mesh Sorting: O(n log n) complexity where n is number of 
meshes

2. Alpha Blending: Additional calculations per pixel for 
transparent objects

3. Memory Usage: Extra channel for alpha values
4. Z-Buffer Processing: More complex due to transparency 

handling


