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1 THREAT SCENARIO k -ANONYMITY DETAILS

Age and gender demographics are generalized by grouping values into ranges to achieve k-anonymity. The number of data rows for each
unique combination of age and gender ranges must be k or greater to maintain the privacy guarantee. The combined dataset of ET-DK2 and
360 em consists of 24 individuals with age and gender values listed in Table 1.

Table 1: Age and Gender demographics for ET-DK2 and 360 em datasets. Note that Subject ID 1 from both datasets were excluded from analysis
due to data loss and subject sickness during data collection, respectively.

Dataset Subject ID Age Gender
ET-DK2 2 M 43
ET-DK2 3 F 27
ET-DK2 4 M 29
ET-DK2 5 M 32
ET-DK2 6 F 28
ET-DK2 8 M 26
ET-DK2 9 F 23
ET-DK2 10 M 30
ET-DK2 11 F 28
ET-DK2 12 M 26
ET-DK2 13 M 52
ET-DK2 14 M 26
ET-DK2 15 M 35
ET-DK2 16 M 50
ET-DK2 17 M 33
ET-DK2 18 M 31
ET-DK2 19 M 32
ET-DK2 20 M 36
360 em 2 M 38
360 em 3 M 29
360 em 4 F 23
360 em 5 F 31
360 em 6 M 27
360 em 7 M 31
360 em 8 F 23
360 em 9 M 24
360 em 10 M 23
360 em 11 M 27
360 em 12 M 23
360 em 13 M 23
360 em 14 M 32

Ranges were selected for each value of k that maximized the total number of groups while ensuring each group had at least k rows matching
the ranges of age and gender. The ranges of age and gender used to establish k-anonymity are listed in Table 2.

Table 2: Gender and age ranges used to generalize the ET-DK2 and 360 em demographics for k-anonymity. For each value of k the data rows are
mapped into the listed ranges based on actual values. For example, (Male, 23-31) would be assigned to all Males between the age of 23 and 31.
Male/Female refers to the data rows not specifying either value for Gender.

k Gender & Age Generalization
4 (Female, 23-31), (Male, 23-27), (Male, 29-31), (Male, 32-33), (Male, 35-52)
6 (Female, 23-31), (Male, 23-27), (Male, 29-33), (Male, 35-52)
8 (Male/Female, 23-27), (Male/Female, 28-31), (Male/Female, 32-52)
15 (Male/Female, 23-28), (Male/Female, 29-52)



2 PRIVACY MECHANISM PSEUDOCODE

2.1 k-same-synth

1: procedure k-SAME-SYNTH(k, sample data, fix event params, sacc event params)
2: Parameters: k - k-anonymity parameter
3: sample data - Time series of gaze samples, indexed by stimulus m, identity i, and fixation/saccade events e
4: fix event params - Fixation Gaussian parameters, indexed by stimulus m, identity i, and event e
5: sacc event params - Velocity profile parameters, indexed by stimulus m, identity i, and event e
6: f ix event params← k-same-select sequence(k, f ix event params) ▷ Make fixation params k-anonymous
7: sacc event params← k-same-select-sequence(k,sacc event params) ▷ Make saccade params k-anonymous
8: for m = 1 to num stimuli do ▷ Process events from each stimulus independently
9: for i = 1 to num identities do ▷ Process samples for each identity

10: f ix data params← f ix event params[m, i, :] ▷ List of fixation event parameters
11: for e = 1 to num f ixations do
12: µx,µy,σx,σy, t← f ix data params[e]
13: sample data[m, i,e]← SynthFixation(µx,µy,σx,σy, t) ▷ Synthesize samples for fixation e by sampling 2D Normal distribution
14: sacc data params← sacc event params[m, i, :] ▷ List of saccade event parameters
15: for e = 1 to num saccades do
16: a,b,c, t← sacc data params[e]
17: sample data[m, i,e]← SynthSaccade(a,b,c, t) ▷ Synthesize samples for saccade e using velocity profile from Gaussian model

return sample data

2.2 event-synth-PD

1: procedure EVENT-SYNTH-PD(k, γ , sample data, fix event params, sacc vel profiles, CVAEenc, CVAEdec)
2: Parameters: k,γ - plausible deniability parameters
3: sample data - Time series of gaze sample, indexed by stimulus m, identity i, and fixation/saccade events e
4: fix event params - Fixation Gaussian parameters, indexed by stimulus m, identity i, and event e
5: sacc vel profiles - Saccade velocities and conditions, indexed by stimulus m, identity i, and event e
6: CVAEenc - Encoder network of C-VAE, maps input to latent space distributions defined by µ and σ

7: CVAEdec - Decoder network of C-VAE, maps input random samples z
⊕

c to synthetic velocities
8: for m = 1 to num stimuli do ▷ Process events from each stimulus independently
9: for i = 1 to num identities do ▷ Process samples for each identity

10: f ix data params← f ix event params[m, i, :] ▷ List of fixation event parameters
11: for e = 1 to num f ixations do ▷ Synthesize fixation samples until PD criterion is met
12: d = (µx,µy,σx,σy, t)← f ix data params[e] ▷ Params for fixation e
13: M f ix← N(x,y) ▷ 2D Normal distribution that returns t values
14: result← False
15: while result == False do
16: y←Mfix(d) ▷ Generate t samples from distribution with curr params
17: Prd ← Pr{y←Mfix(d)} ▷ Probability real seed generated synthetic samples y
18: result← PD Event Privacy Test(k,γ,Prd ,M f ix, f ix event params[m, ̸= i, :]) ▷ ̸= i indicates all individual data besides i

19: sample data[m, i,e]← y
20: sacc data← sacc vel pro f iles[m, i, :] ▷ List of real data saccade profiles
21: for e = 1 to num saccades do ▷ Synthesize fixation samples until PD criterion is met
22: d = (µ1,σ1, · · · ,µL,σL)←C−VAEenc(sacc data[e])
23: Msacc← N1, · · · ,NL ▷ Define M as L independent Normal distributions
24: result← False
25: while result == False do
26: y = (z1, · · · ,zL)←Msacc(d)
27: Prd ← Pr{y←Msacc(d)} ▷ Probability real seed generated synthetic samples y
28: result← PD Event Privacy Test(k,γ,Prd ,Msacc,sacc vel pro f iles[m, ̸= i,e]) ▷ ̸= i indicates all individual data besides i
29: sample data[m, i,e]← y

return sample data

1: procedure PD EVENT PRIVACY TEST(k,γ ,Prd ,M,D))
2: Parameters: k,γ - plausible deniability parameters, Prd - Probability of real seed for y, Pr{y←M(d)}
3: M - generative model that synthesized y, D - data records from identities other than input
4: i′← unique integer i′, s.t.γ−i′−1 < Prd ≤ γ−i′

5: k′← 0
6: for i = 1 to num identities do
7: Di← D[i]
8: for da ∈ Di do
9: if γ−i′−1 < Pr{y = M(da)} ≤ γ−i′ then

10: k′← k′+1
11: Break ▷ Move for loop for i onto the next identity
12: if k′ ≥ k−1 then return Pass
13: else return Fail



2.3 Kalεido
The pseudocode below details the kalεido approach for a stream of nraw gaze samples g1,···,nraw , window size w, privacy parameter ε , sample
distance threshold lthresh, sample skipping parameter tskip, spatial parameter r, and ratio of testing to publishing privacy budget h.

The adaptive algorithm includes several parameters that allow for privacy budget savings while processing the gaze sample at each
timestamp. First, a fixed time duration tskip = 50ms is used to skip gaze samples that arrive within tskip of the last published gaze position.
Next, after tskip has passed since the last published gaze point, the algorithm moves on to the testing phase. If the current gaze position is
within the fixation threshold determined by lthresh and εtest , then the previously published position is re-used, and only εtest of the budget for
the current time window is consumed. The algorithm enters the publishing phase if the new gaze position is farther than the threshold. A
noisy gaze position is generated using the ε pub budget with a Planar Laplacian mechanism [1]. The amount of the ε pub budget used decreases
adaptively to preserve as much utility as possible while maintaining ε-DP guarantee within each time window. This process is repeated for each
time window, and any leftover ε pub budget is recycled into the next window. A complete description of the proof that each window consumes
at most ε of the privacy budget is available in the original paper [2].

1: procedure KALε IDO DP(g1,···,nraw , w, ε , lthresh, tskip, r, h)
2: Parameters: g1,···,nraw - Stream of gaze positions, w - Window size (# samples), ε - DP privacy level
3: lthresh - Distance threshold for testing, tskip - # of samples to skip over during testing
4: r - Privacy radius for DP, h - Ratio of privacy budget used for testing
5: ntest ← ⌈w/tskip⌉ ▷ Number of points to test for each window
6: εtest ← ε/(h ·ntest) ▷ Privacy budget allocated to test each sample
7: itest ← null ▷ Index of the last tested gaze position.
8: ipub← null ▷ Index of the last published gaze position.
9: g′i← zeros(nraw) ▷ Published gaze position for sample i, initialized to zeros.

10: ε
pub
i ← zeros(nraw) ▷ List of privacy budget consumed for sample i, initialized to zeros.

11: for i = 1 to num raw do ▷ Process each window of raw gaze samples
12: if itest ̸= null AND t(i)− t(itest)< tskip then ▷ Check if sample should be skipped based on tskip parameter
13: g′i← g′ipub

14: ε
pub
i ← 0

15: Continue
16: itest = i
17: ldis = d(gi,g′ipub

) ▷ Distance between gaze sample i and last published
18: η ∼ Lap(1/εtest) ▷ Sample from Laplace distribution, small values of εtest introduce more noise
19: if ldis ̸= null AND ldis ≤ lthresh +η then ▷ Test if current gaze is close enough to last published to repeat
20: g′i← g′ipub

21: ε
pub
i ← 0

22: Continue
23: ipub← i ▷ Publish a new gaze sample, update index of last published
24: εrem← ε− ε/h−∑

i−1
k=i−nraw+1 ε

pub
k ▷ Compute remaining privacy budget for this window

25: ε
pub
i ← εrem/2

26: g′i← PlanarLap(gi,ε
pub
i /r)

return g′

3 C-VAE MODEL TRAINING PROCEDURE

The C-VAE model for generating synthetic saccade profiles was trained using tensorflow version 1.13.1. Models were trained independently
for each dataset using data from all individuals and stimuli. Training was performed using 75% of the available data with the remaining 25%
used as a validation set.

All models were trained with an ADAM optimizer using tensorflow’s Model compile and fit functions. The loss function was defined as

L(x,D(z)) = ||x−D(z)||2−KL(N(µ,σ),N(0,1)),

where the first term is Mean Squared Error for the reconstructed synthetic profile and the second terms employs KL Divergence to enforce
latent space sampling that follows a normal distribution with zero mean.

4 C-VAE MODEL HYPER-PARAMETER OPTIMIZATION

Hyper-parameters were tuned using the EHTask dataset as it contained a longer duration of data compared to the DGaze dataset. Grid search
optimization was performed over the following sets of values, with optimal parameters in bold:

• Learning Rate: 0.001, 0.01

• Batch Size: 20, 60, 100

• Number of Epochs: 10, 20, 30

• Encoder Hidden Layer with ReLU activation function: 32, 64, 96 Nodes

• Latent Space Dimension: 32, 64, 96

• Decoder Hidden Layer with linear activation function: 32, 64, 96 Nodes

The optimal parameters produced an average loss of 0.33 on the validation set.
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