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Abstract

Augmented Reality (AR) devices are set apart from other mobile
devices by the immersive experience they offer. While the powerful
suite of sensors on modern AR devices is necessary for enabling
such an immersive experience, they can create unease in bystanders
(i.e., those surrounding the device during its use) due to potential
bystander data leaks, which is called the bystander privacy problem.
In this paper, we propose BystandAR, the first practical system that
can effectively protect bystander visual (camera and depth) data in
real-time with only on-device processing. BystandAR builds on
a key insight that the device user’s eye gaze and voice are highly
effective indicators for subject/bystander detection in interpersonal
interaction, and leverages novel AR capabilities such as eye gaze
tracking, wearer-focused microphone, and spatial awareness to
achieve a usable frame rate without offloading sensitive informa-
tion. Through a 16-participant user study, we show that BystandAR
correctly identifies and protects 98.14% of bystanders while allow-
ing access to 96.27% of subjects. We accomplish this with average
frame rates of 52.6 frames per second without the need to offload
unprotected bystander data to another device.
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Figure 1: An illustration of the medical use case of AR, where

a nurse wearing an AR device is interacting with a patient

while there are bystanders present (watching or not watch-

ing the nurse). In this situation, while the patient’s medical

record information needs to be presented to the nurse via

the AR device, bystander information must be protected.

1 Introduction

Augmented Reality (AR) devices are expected to reach an estimated
1.7 billion users by 2024, expanding from 1 billion in 2022 [4]. This
is driven in part by industrial, healthcare, automotive, and military
applications, with AR devices creating advances in mental health
research, military decision-making, and assisting students with dis-
abilities [59, 66]. These applications rely on the unique capabilities
of AR devices, namely the ability to understand the physical world,
and seamlessly blend the physical world and the holographic, digi-
tal world. This ability to create a virtual mapping of a physical space
through Simultaneous Localization and Mapping (SLAM), establish
synthetic holographic contact, and sense user eye gaze and hand
gestures, is made possible by the integrated and powerful suite of
sensors on modern AR devices. These sensors include Visible Light
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Cameras (VLCs), depth sensors, eye-tracking sensors, embedded
microphones, accelerometers, and more [63].

Such sensors, while essential to the immersive experience that
makes AR devices unique and powerful, do not discriminate in
the data they collect. AR devices capture data required for well-
intentioned tasks (e.g., SLAM, pose estimation, and gesture recog-
nition), but also capture visual (e.g., camera and depth) data about
bystanders (i.e., persons surrounding the device during its use),
which can potentially be used to identify sensitive information
(age, gender, emotion, gait, etc.) of bystanders for malicious pur-
poses [7–9, 22, 28, 33]. This threat of bystander data leak is called
the bystander privacy problem [14, 15, 52] (see definition in §2).

Example scenarios where the bystander privacy problem can
arise include so-called life-logging or recording of visual evidence
of everyday activities [20], assisting an Alzheimer’s patient with
memory care [25], and the AR functionality required to understand
and interact with the physical world [56, 63]. Additionally, consider
an AR-assisted medical service scenario, where an AR application
is employed to assist nursing staff with triage at a hospital. The AR
application may use facial recognition to present the nurse with
a medical record chart for a patient, displayed in the AR device
worn by the nurse. In a typical usage scenario (as shown in Fig. 1), a
patient may be accompanied by a family member who sits or stands
near her during a visit, and there could be other nearby patients
as well. In this situation, the AR application may identify the faces
of the bystanders (i.e., her family member and other patients) and
unintentionally retrieve and present their medical records instead
of, or along with, that of the patient. This violates bystander privacy.

While there are very few studies addressing the bystander pri-
vacy problem specifically for AR devices [58, 65], there exists a large
body of bystander privacy protection (BPP) systems for mobile and
wearable devices in general. These systems can be divided into two
categories based on whether the required input is explicit or implicit.
Explicit BPP systems require the bystander or the user to possess
an item, perform a gesture, or enroll in a system to expect privacy
protection [1, 31, 35, 35, 53, 58, 64, 65, 67], which is not desired. In
contrast, by using implicit information about the bystander (e.g.,
distance from the camera, the direction of eye gaze, emotion, and
position in the frame) to determine if she is meant to be a part
of the captured image. Also, implicit BPP systems seek to protect
bystander privacy even when the bystander is unaware of the pres-
ence of the device [12, 26]. However, such systems can perform
poorly when bystanders do not present themselves as expected
in the captured image. In addition, existing implicit systems are
implemented exclusively off-device, meaning that bystander data
must be transferred to another device for processing. This opens an
additional attack surface during the movement of this unprotected
bystander data to a remote location [55].

Contributions. Due to the limitations of these existing BPP
systems (which are designed for mobile and wearable devices in
general, not specifically for AR devices), there is currently no practi-
cal BPP solution for head-worn AR devices. To that end, we propose
BystandAR, the first practical BPP system that can effectively dif-

ferentiate a subject from a bystander and protect bystander visual

(camera and depth) data in real-time with only on-device processing

that does not negatively impact the immersive applications AR devices

offer. The main contributions of our work are as follows.

(1) From interesting studies in the field of psychology, we draw
a useful insight that the device user’s eye gaze and voice are highly
effective indicators for subject/bystander determination in interper-
sonal interaction. Inspired by this key insight, we propose Bystan-
dAR, a novel bystander privacy protection system that uses the AR
user’s eye gaze and voice data to accurately determine the subject
of interpersonal interaction, by leveraging novel AR capabilities
such as eye gaze tracking and wearer-focused microphone array.

(2) Building such a system that exploits our key insight is highly
nontrivial and entails two practical challenges: (C1) The device
user’s eye gaze may wander off the subject during the interaction;
(C2) Performing the four basic tasks of bystander privacy protection
(face detection, eye gaze tracking, subject identification via face-eye-
gaze matching, and obscuration of bystanders) for every captured
frame on-device is too costly and infeasible to keep up the frame rate.
To address these challenges, we leverage the inherent functionality
of AR devices, namely spatial awareness and eye gaze tracking,
to locate faces in 3D and monitor the user’s interactions with the
detected face, hence removing the need to infer the location of faces
from every captured frame and maintaining a usable frame rate
with only on-device processing.

(3) Through an evaluation involving 16 participants, BystandAR
was successful in protecting 98.14% of bystander faces through
obscuration and in identifying the subject of an AR interaction
in 96.27% of output frames. This ensures that the visual data of
identified subjects remain available for legitimate uses. Our evalua-
tion also shows an improvement in bystander protection by 12%
over the most accurate existing solution and shows a marked in-
crease in bystander perceptions of privacy. These improvements
are gained while keeping bystander data on-device, removing the
need to offload unprotected bystander data to another device, and
maintaining frame rates as high as 52.6 frames per second (FPS).

2 Background and Motivation

In this section, we provide a brief background of the bystander
privacy problem and explore the impact of modern AR devices.

2.1 The Bystander Privacy Problem

We first give some key definitions. An AR user (or simply user) is a
person who wears an AR device; a subject is a person with whom
the user intends to interact; a bystander is any non-user, non-subject
third-party surrounding the device during its use. The Bystander
Privacy Problem refers to when data (images, video, audio, etc.)
that can be used to identify sensitive information (age, ethnicity,
physical disability, emotion, etc.) is collected from bystanders who
have not given consent to be part of the data collection [14, 15, 52].
Such bystander data leaks could also happen when well-meaning
users, using AR applications for well-intentioned purposes, unin-
tentionally violate bystander privacy.

2.2 Modern AR Devices Escalate the Bystander

Privacy Problem

Surveys of bystander attitudes toward the presence of digital com-
munication devices [51] were conducted as early as the year 2000,
which shows negative perceptions of cellphone use (then novel)
in public places. The survey participants reported that strangers
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felt “intruded upon” when these devices breach the physical/digital
barrier in their presence.

The rise of modern mobile devices, such as AR devices, opens the
door to the development and growing adoption of novel immersive
applications such as AR. These applications perform continuous
sampling and recording of the physical world as part of their inher-
ent operations, and in doing so, have propelled the bystander pri-
vacy problem into prominence. For example, a recent study focused
on bystander perception of AR devices shows that bystanders are
concerned with data collected by AR devices being used to uniquely
identify them, and would prefer a way to require permission for
the data to be recorded [17, 32]. Even medically assistive devices,
including those designed to help persons with visual impairments,
have been shown to elicit negative bystander feedback [3]. On the
other hand, more recent work shows that bystanders are more will-
ing to allow visual data to be captured if a blurring filter is added
during capture; an additional 17.5% stated that they were willing
over the un-blurred baseline [18]. Hence, there is a pressing need
to develop a solution that can effectively protect bystander privacy
without sacrificing the immersive experience AR devices offer.

3 Related Work

To the best of our knowledge, there is no practical deployment of a

bystander privacy protection (BPP) system for head-worn AR devices.

Hence, we discuss existing works on tackling the bystander pri-
vacy problem in mobile and wearable devices in general, including
works that consider social media photo-sharing and compare their
advantages and shortcomings.

There is a large body of existing BPP systems for mobile and
wearable devices in general. These systems can be divided into
two categories based on whether the input the system requires
is explicit or implicit. Explicit BPP systems require the device user
or the bystander to interact with the system, through a published
privacy policy, hand gestures, etc. In contrast, implicit BPP systems

use natural actions that occur with human interaction with the
system (e.g., eye gaze, voice communication, and physical distance)
to differentiate between the bystander and the subject.

3.1 Explicit BPP Systems

Explicit BPP systems require either the bystander, the device user, or
both to perform some explicit actions to ensure bystander privacy.
Works such as [1, 35] require potential bystanders to upload photos
of their faces to train a facial classifier or respond to a prompt on
their mobile device after a nearby photo capture to achieve some
measure of privacy. Systems such as [29, 64] require bystanders to
have a pre-defined privacy policy and facial signature on a linked
server and potentially require a device user to audit and validate the
privacy filters applied to scenarios that the system deems sensitive.
Solutions such as [27, 35, 53, 58, 65, 67] are software frameworks
and GUIs, requiring special equipment to be worn by bystanders,
or by the device user in the presence of bystanders. Methods such
as [31, 57, 64] require explicit hand gestures or markings from
the device user or bystanders to express their privacy preferences
or to exclude certain objects from an image, again requiring a
user/bystander to make a conscious decision to be included or not.

In general, by giving the bystander or the user control of the
situation, these explicit BPP systems potentially provide the kind
of assurances that allow AR devices to be more acceptable in pub-
lic places [18]. However, requiring the user/bystander to perform
explicit actions such as hand gestures or to wear special physical
devices imposes a significant burden on the user/bystander, result-
ing in such required actions being overridden, ignored, or unused
if the user/bystander is not paying enough attention. Furthermore,
such systems often require the device to be connected to a server
to transport raw data, which increases the exposure of the data to
potential misuse that the system is designed to prevent [55].

3.2 Implicit BPP Systems

Implicit BPP systems seek to protect bystander privacy without
requiring any explicit actions to be taken by the user or the by-
stander. Such systems generally use a machine learning model (e.g.,
a neural network) to detect bystanders in the images captured by
the device’s camera [11–13, 26]. Such inference models extract var-
ious types of information from the images, such as distance from
the camera, the direction of eye gaze, emotion, and position in the
frame, and use them to improve detection accuracy.

By omitting the need for explicit actions taken by the user or
bystander, implicit BPP systems can be easily deployed even when
the bystander is unaware of the potential for their information to
be recorded and hence promise much wider adoption. However,
such systems can potentially suffer poor accuracy in bystander
detection when bystanders present themselves in unexpected ways
in the captured images. For example, two key features extracted
and used in the bystander detection model in such systems are the
eye gaze direction of a person in the captured image and being
closer to the center of the frame than other persons; if a person’s
eye gaze is toward the device user and/or near the center of the
frame, it is likely to be interacting with the device user and hence
unlikely to be a bystander. However, as shown in the doctor visit
scenario in Fig. 1, a bystander in the background could be looking
at or moving toward the nurse (i.e., the device user). In this case,
existing BPP solutions utilizing the two aforementioned features
would erroneously label the bystander as a subject.

4 Key Insights and Challenges

In this section, we introduce our key insight that the AR user’s
eye gaze along with her voice can be much better indicators in
differentiating the subject and the bystander and discuss the main
challenges in designing a bystander privacy-preserving system that
exploits this key insight.

4.1 Key Insights

A seminal work from the field of psychology shows that in inter-
personal communication, a participant is expected to look at her
partner more than 60% of the time, with a higher rate of 73% while
the participant is listening to her partner speak [5]. Other works
report this rate to be as high as 88% during a conversation [70].
Interestingly, while speaking, the speaker’s eye contact can drop
to as low as 41% of the total conversation time. Conversely, for
eye contact with strangers or persons with whom one does not
intend to speak (who are typically bystanders in an interpersonal
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interaction), other works report an upper bound of 3.3 seconds
before the eye contact becomes undesirable to the recipient [6].

From these psychological studies, we draw the following key
insights. First, we can infer that in an interpersonal interaction using
immersive devices such as head-worn AR devices, eye contact of the

device user with others can be a highly effective indicator or feature in

distinguishing the subject from a bystander, because psychologically,
the user is likely to make frequent eye contact with the subject, but
unlikely to stare at strangers (typically bystanders) for extended
periods of time. Second, while the device user’s eye gaze may vary
across different cultures (e.g., it may occasionally wander off the
listener in certain cultures) [2], it is more likely to be directed
at the listener while speaking. This suggests that combining the

information of the device user’s eye gaze and voice can be a highly

effective indicator of whether the person is the intended subject of the

interaction or just a bystander.

4.2 Design Challenges

A straightforward design of a bystander privacy protection (BPP)
system that exploits the above key insights would simply perform
the following four basic tasks for every camera-captured frame, to
identify the subject and bystanders in the frame: (1) Face detection:
identify all of the faces in the frame, e.g., using a state-of-the-art
face detection model; (2) Eye gaze tracking: track the eye gaze of
the device user during the frame interval; (3) Subject identification
via face-eye-gaze matching: identify the face in the frame that the
user’s eye gaze intersects with, and label the face as the subject
of the current interaction, and the remaining faces as bystanders;
(4) Obscuration of bystanders: obscure the faces of the bystanders
in the frame using masking or other techniques (blurring, avatar,
silhouette, pixelating, etc.) and export the frame (e.g., recording it or
sending it to a third-party application). However, such a straightfor-
ward design would not work well due to the following two practical
challenges.

Challenge 1: The device user’s eye gazemay wander off the

subject during the interaction. As shown in numerous psycho-
logical studies discussed in §4.1, while the device user’s eye gaze
tends to remain on the subject’s face during a personal interaction,
it is not 100% of the time. This happens for two possible reasons.
First, the user’s eye gaze occasionally wandering away from the
subject’s face is a normal part of human conversations, expected
as a way to signal the natural transitions in the conversation [16].
Second, the device user may need to refer to outside aids, such as
maps or charts, as part of this interaction [70]. The consequence of
this eye gaze wandering behavior is that simply relying on face-eye-
gaze matching for each individual frame can misidentify a subject
as a bystander (i.e., false negative) and a bystander as a subject (i.e.,
false positive).

Challenge 2: Performing the aforementioned four tasks

for every frame on the device is too costly and infeasible to

keep up the frame rate. Face-eye-gaze matching (Task 3) and
obscuration of bystander faces (Task 4) tend to be light-weight, and
eye gaze tracking (Task 2) comes at almost no cost with hardware
support (such as the Microsoft HoloLens 2 [44]). However, identi-
fying faces in a frame (Task 1) generally requires performing face
detection inferences, and high-accuracy face detection using deep

Existing AR 
libraries

Malicious AR App

Privacy
leakage

Remote 
analysis

AR sensors

BystandAR

Malicious AR App

Privacy
leakage

Remote 
analysis

AR sensors

Without BystandAR With BystandAR

Figure 2: A malicious AR application is designed to request

bystander visual data from a device, infer sensitive infor-

mation from this data, and offload the inference results to

another location for exploitation. BystandAR, shown be-

tween the device sensors and the malicious applications, is

designed to prevent this.

neural network (DNN) models (e.g., DeepFace [62]) tends to be
compute-intensive and incurs a long inference time when running
on resource-constrained mobile devices. For example, works such
as [23, 24, 30, 37, 69] show that, while possible, on-device inference
in resource-constrained mobile devices is generally difficult, and
in this AR context, negatively impacts the frame rates that are di-
rectly correlated with user experience.1 Even models specifically
designed for use on mobile devices can limit frame rates to an unac-
ceptable level [24, 36]. Therefore, we seek a practical solution that
protects bystander privacy without compromising user experience
by maintaining usable frame rates (e.g., near 60 FPS).

5 BystandAR Design

In this section, we discuss the threat model that our proposed
BystandAR system is designed against, and how the key system
components of BystandAR overcome the two main challenges
discussed in §4.2.

5.1 Threat Model and Our Approach

BystandAR is designed to prevent malicious AR applications run-
ning on AR devices from collecting sensitive information from
visual data of bystanders of interpersonal interactions during the
execution of the AR application. Such malicious applications may
perform hidden operations that extract sensitive information in by-
stander visual data captured during AR application execution [34].

As AR applications, these malicious applications can have full
access to AR device cameras, microphones, and network stack after
a cursory set of permissions requests, which will be granted by the
device user [19, 21]. We note that, while BystandAR is designed
to prevent malicious activities, the design prevents accidental by-
stander privacy leaks as well. Fig. 2 gives an illustration of this
threat.

1Microsoft recommends that applications using their HoloLens 2 maintain a frame
rate of 60 FPS in order to provide a positive user experience [40].
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The high-level approach of BystandAR to overcome the above
threat is to intercept the frame input operations of the application
by (1) modifying the operating system’s method of allowing access
to raw visual data frames, (2) identifying the bystanders/subjects
and obscuring bystander faces accordingly, and then (3) passing
on the obscured frames to the application. Alternatively, one can
implement BystandAR by requesting applications to use special
APIs for reading visual data frames. These APIs, which are pro-
vided as libraries or a modified framework, implement the key tasks
performed by BystandAR, noted above. During application instal-
lation, permissions will be given to these special APIs but not the
regular APIs for reading visual data frames.

5.2 High-Accuracy Bystander Detection using

History Information

Recall from Challenge 1 in §4.2 that we cannot simply match the
location of detected faces in every frame with the user’s eye gaze.
Doing so would disregard the assumption that the user’s eye gaze
will wander as a natural part of human interaction. When this
wandering gaze intersects with a bystander, this bystander could
erroneously be labeled a subject and left unprotected in the output
frame, violating bystander privacy.

We overcome this challenge by collecting data on the history
of the user’s gaze, as opposed to instantaneous information. We
then use the historical information for different persons in these
recent frames to determine who is the subject(s). Specifically, the
identification of the subject/bystander in the current frame is con-
trolled by a threshold. Since we have two input modalities (i.e.,
eye gaze and voice), the threshold is two-fold. We set a threshold
for purely eye gaze contact with a face and one for eye gaze and
simultaneous voice contact. Since previous work suggests that eye
and voice contact is more indicative of human attention [60, 70],
we give the eye gaze threshold with voice a lower value. We do not
provide for a voice-only threshold, as the user’s voice alone does
not identify a face.

These thresholds are the minimum total rate of eye/voice con-
tact over the life of the detection and are informed by the works
discussed in §4.1. These works give a range of eye gaze expected
in conversations ranging from 41% to 73% and can be as low as
6% when the user is referring to maps, charts, or other visual aids.
Additionally, when speaking to a person, eye contact is made less
often than when listening to a person speak. Since BystandAR has
no way of knowing if the user is listening, we treat the user’s eye
gaze and voice as a more sure sign of a conversation than purely
eye gaze and provide a lower threshold when voice is present.

Algorithm 1 shows the history-based bystander detection algo-
rithm. First, BystandAR uses the eye-tracking sensors and wearer-
focused microphones present on nearly any modern AR device [38,
39, 42], to log the device user’s eye gaze and voice data and establish
context (Lines 5 and 6).

To determine the history of a user’s contact with persons in
the field of view, we also monitor the total amount of eye/voice
contact with every detected face (Lines 7-14). Every face detection
begins labeled a bystander. If over the life of the detection, the user
has made enough contact with the detection to meet the threshold,
the face is labeled a subject. BystandAR also allows for labeling

Algorithm 1 BystandAR Control Loop
1: Parameters: sampling interval 𝑁
2: FrameCounter = 0
3: while True do
4: Increment FrameCounter
5: Compute the current location of the eye gaze
6: Monitor if voice input is above noise floor
7: if Eye-gaze/Voice intersects with a face then
8: Increment eye/voice tracker for face
9: if Eye-gaze/Voice history > Threshold then

10: Label face a subject
11: else

12: Label becomes/remains bystander
13: end if

14: end if

15: if 𝐹𝑟𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑁 then

16: 𝐹𝑟𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0
17: Retrieve raw depth and camera frames
18: Infer location of all faces in frame
19: for each Face detected do

20: Transform 2D detection to 3D world space
21: if face overlaps with an existing face then
22: Replace current detection; reset TTL
23: else

24: Create new detection
25: end if

26: if Application requesting sensor data then
27: Obscure bystander faces in frame
28: end if

29: end for

30: else

31: if Application requesting sensor data then
32: Obscure bystander faces in frame
33: end if

34: end if

35: Release frames to application
36: end while

multiple subjects using this method. It is possible that the label of
subject can revert to bystander if the threshold for contact is no
longer met.

5.3 On-Device Bystander Detection via Periodic

Face Detection

The history-based bystander detection method described above
still assumes performing face detection on every camera frame. As
noted in Challenge 2 in §4.2, performing face detection on every
frame is too costly on mobile devices and cannot keep up with the
high frame rate (e.g., near 60 FPS) needed to support a high quality
of user experience (QoE). To overcome this challenge, we explore
how to avoid performing face detection on every frame.

If during an interpersonal interaction, the AR device does not
move, consecutive frames captured by the camera would have the
same spatial frame of reference, and we could simply skip every
𝑁 frames for face detection in the above history-based algorithm
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and still be able to successfully match faces with the user’s eye
gaze and voice. One challenge is that the history of eye-gaze and
voice information needs to be accumulated for the same person
across frames, but the faces (of bystanders or the subject) may move
across frames. We thus need to keep track of their movement so
we know faces in different frames correspond to the same person.
This could be achieved by lightweight motion tracking techniques
such as optical flow [50].

The above simple frame-skipping scheme, however, cannot han-
dle the movement of the device itself. This can happen often in
interpersonal interactions as the user moves her head and position
and changes the spatial frame of reference of consecutive frames,
which makes it much harder to match faces in different frames to
the same person.

To tackle this challenge, we observe that one of the built-in
capabilities of AR devices, SLAM, which is the foundation of the
device’s spatial awareness, can be used to track the location of a
detected face when the device moves. We can exploit this unique
AR device capability to compensate for the movement of the device.

To do this, we estimate the time required for a face to move
outside of a face detection’s bounding box (described in more detail
in §8 (BystandAR Limitations)). From this, we can then estimate
the number of subsequent frames 𝑁 during which the faces will
remain in the same bounding box, and skip face detection for these
𝑁 frames. During the capture of these subsequent 𝑁 frames, we
assume that the face will remain inside its previous bounding box,
removing the need for per-frame detection. In other words, we
exploit a novel capability of AR devices to track faces over time,
even with device movement, which removes the requirement to
perform face detection more often than the device can support.

Tracking face movement using 3D-2D transformation. Us-
ing Algorithm 1, we explain this process as follows:

If a frame is selected for inference at the interval 𝑁 , we capture
the frame (Line 17) and infer the location of each face in the captured
frame (Line 18).Wemust now locate each face detected in this frame
using an absolute spatial reference, called a world coordinate system
or world space in AR [49]. By doing so, we ensure that the face can
be accounted for as the user moves, even when this motion causes
the face to move completely out of the next camera frame. We can
use the method provided by AR cameras to convert a 2D point (e.g.,
that of a face detected in the 2D frame) to the 3D world space (Line
20). If a face overlaps with a previous detection, indicating that the
face has moved, we update the location of the face. In this way, we

can track face movement (Lines 21-25). To prevent stale faces, if the
face has not been updated in a given Time-to-Live (TTL) window,
we remove it (Line 22). Fig. 3 presents an illustration of this process.

5.4 Frame Obscuration

Any usable solution to increase bystander expectations of privacy,
must also allow third-party applications access to any obscured
frames. In the final step, BystandAR performs obscuration of the
faces of detected bystanders in every frame and its corresponding
depth frame, before passing them to the requesting AR applications
(Lines 31 and 32).

Specifically, every frame is compared against existing, detected
faces for potential obscuration to ensure bystander privacy as fol-
lows. As each new frame is captured, BystandAR compares existing
facial detections and labels to the current frame. Using a system
similar to the one we designed to create 3D locations from 2D de-
tections, it then converts the 3D location of any detected face to a
2D position relative to the camera’s current frame. If the detection
has been labeled a subject and the user is making eye contact, we
do nothing. If it has been labeled a bystander or is a subject not cur-
rently under the user’s attention, we obscure it in both the camera
and depth frame.

5.5 Putting It All Together - BystandAR

Architecture

Fig. 4 shows the architecture of our proposed BystandAR system.
The camera and depth frames are continuously captured by the
AR device camera. At a given sampling interval, the face detection
module infers the 2D location of any faces present in the frame, and
BystandAR locates these faces in 3D after 2D-to-3D transforma-
tion. Using this location, we create a 3D bounding box, invisible to
the user, that serves as the 3D anchor for each detection. By default,
these faces are labeled bystanders. As sampled face detection con-
tinues and the position of the face changes, BystandAR updates
the location of the face and moves the 3D bounding box accord-
ingly. We provide a discussion about the speed of face movement
BystandAR can tolerate in §8.

In parallel with the above face detection and tracking process,
BystandAR collects information about the user’s eye gaze and
voice using the AR device’s onboard eye gaze tracking and wearer-
focused microphone. For every camera frame, BystandAR tracks
on which face the user’s attention is currently focused on and main-
tains a history of this information for all currently detected faces.
Once the history of the user’s attention (eye gaze or simultaneous
eye gaze and voice input) meets a pre-specified threshold, the de-
tection is labeled a subject. With this context, the face obscuration
module obscures the faces of each detection as required. After by-
stander visual data has been removed from each frame, the frame
is safe for release to any third-party application.
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Figure 4: BystandAR Architecture. Raw data is captured from the device’s sensors and is used both in face detection and

learning eye gaze and voice history information for bystander detection. Afterward, bystander detection is used to obscure

human faces not designated subjects in both camera and depth frame data.

6 Prototype Implementation

We built the BystandAR prototype in Unity 2021.3.11f1, using Mi-
crosoft’s Mixed Reality Toolkit (MRTK) version 2.7.2, and we de-
ployed BystandAR on a Microsoft HoloLens 2 device running Win-
dows Holographic for Business Build 20348.1528. The core func-
tionality of BystandAR was implemented in about 1,200 lines of
code. All source code was completed in C#.

We use Microsoft’s MediaCapture class [46] to capture camera
and depth frames, as well as collect the transformation matrices
required for the 2D-to-3D detection conversion. The FaceDetector
class of Microsoft’s FaceAnalysis namespace is used for face detec-
tion [43]. This library provides accurate and tested functionality
for determining the location of faces in 2D images, something we
require to infer the 3D location of faces using spatial awareness.
This face is represented by a Unity GameObject [68]. The onboard
SLAM then continuously monitors the face in the physical world
as the user moves. This functionality is not designed by us but
comes “for free” with AR devices. We use a sampling rate of every
8 frames, informed by pilot testing and determined to be a good
balance of accuracy and device resource load. This rate was the
highest inference rate where we could expect 50+ FPS of frame
rate during pilot testing. On a system with more computing power,
this rate could be increased, yielding higher accuracy and similar
frame rates. We collect camera frames with an input resolution of
1290 × 1080 pixels, a parameter determined in pilot testing to be a
balance of inference accuracy and latency. We test our implemen-
tation at two different threshold levels. One, designed to test the
higher limits of expected human eye/voice contact, sets a minimum
of 50% pure eye contact or 25% simultaneous eye gaze and voice
contact over the life of the detection. A lower threshold, 25% and
15%, respectively, was designed to test the lower bound of expected
contact. These thresholds were created after studying literature on
the dynamics of human eye contact in interpersonal interactions
(see §4.1), and validated during our pilot testing. They are designed
to serve as the highest and lowest values of the middle 50% of ex-
pected eye and voice contact between human being engaging in a
conversation. However, these values can be altered for optimal use
across different contexts.

For the obscuration of the frame, we use a complete mask of the
camera frame informed by the face detection’s bounding box. The

(a) Camera Frame (b) Depth Frame

Figure 5: An illustration of the output of BystandAR if a

third-party application is requesting visual data. We blur the

face of the subject only to protect the participant’s identity.

Note: the “boxes” over the face of the bystanders in the depth

data in (b) reflect the depth of the bystander themselves in a

plateauing manner.

complete masking, as opposed to blurring, is informed by works
(e.g., [71]) that show deblurring of such an image is indeed possible.
Unique to the depth obscuration, we do not simply change the bit
values of the raw depth data to create a mask, but seek to plateau

the existing data to keep from creating “depth holes” in the image.
Instead of completely masking the depth area, we smooth over the
face of bystanders using the depth at the edges of the detection
as a reference. This keeps from creating “depth holes” artificially.
As noted in works such as [72], depth holes create inconsistencies
that can hamper the AR user experience. If using the depth frame,
knowledge of the presence of the face is still kept, but the details and
potentially uniquely identifying contours of the face are removed.
We show an example of the output of BystandAR in Fig. 5.

We use the HoloLens 2’s onboard eye gaze tracking, wearer-
focused microphone, and built-in spatial awareness to accomplish
these tasks through the MRTK [48]. These APIs allow us to leverage
the novel capabilities of AR devices in order to fully implement the
BystandAR design.

7 Evaluation

Our evaluation consists of 16 participants. It is designed to not only
test the effectiveness of BystandAR (i.e., the ability of BystandAR
to differentiate the subject from a bystander) but also to evaluate
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performance when implemented on a Microsoft HoloLens 2. We
evaluate the effectiveness of BystandAR by evaluating the success
rate, defined as the amount of correctly obscured faces compared
to the total number of detected faces corresponding to bystanders
in every frame. We evaluate the performance of our prototype by
measuring the frame rate, compared with the minimum frame rate
for preserving the user experience recommended by the device
manufacturer. Additionally, we measure the effect BystandAR has
on bystander perceptions of privacy in the presence of AR devices
with a post-testing survey.

7.1 Evaluation Procedure

The evaluation for BystandAR has been approved by our orga-
nization’s Institutional Review Board. Sixteen participants were
recruited using a graduate student mailing list and using distribu-
tion lists for undergraduate Human-Computer Interaction courses.
All participants were 18 or older. Prior to testing, each user was
given a 10-minute tutorial on AR gestures, specific to the Microsoft
HoloLens 2, and given instructions on fitting and operating the de-
vice. Additionally, each user was instructed to complete an eye gaze
calibration using HoloLens 2’s calibration function. For evaluation,
the prototype was designed to offload every 10th obscured frame.
This is separate from the inference sampling interval and was used
only to capture obfuscated data for evaluation.

The sixteen participants were grouped into eleven tests that
contain one user and one to three bystanders. Every test contains a
subject, except for the “no subject” test in §7.4. Among the eleven
tests, two contain three bystanders, seven contain two bystanders,
and two contain a single bystander; five contain the movement
of bystanders, and six do not. During this test, the AR user was
instructed to ask questions of the partner (i.e., subject) seated ap-
proximately 2 meters from them, for a total of 3 minutes. The AR
user then swapped roles with their partner by giving them the AR
headset and repeating the test.

We divided the data collection sessions into two groups in order
to test two eye gaze and voice thresholds. Group 1 used a gaze
threshold of 50% contact over the life of the face detection. Since
we know that eye gaze and voice have a stronger correlation with
the user’s attention, we gave a lower threshold of 30% to eye gaze
contact when the AR user is speaking. Group 2 had these thresholds
set to 25% and 15%, respectively, to explore a shorter duration for
subject detection.

7.2 Evaluation Metrics

For each obscured frame, we analyze the effectiveness of the by-
stander protection mechanism by using DeepFace [62], an open-
source facial analysis tool, to evaluate BystandAR’s ability to iden-
tify subject/bystanders, and when necessary, protect them. Any
bystander face found by DeepFace in the obscured frame indicated
a failure of our system. In this experiment, we used a confidence
threshold of 90% for DeepFace detections, as recommended by the
model author [61]. We compute the total amount of obscured by-
stander faces compared to the total amount of detected bystander
faces as the bystander protection rate.

We then analyze each frame to quantify the prototype’s effec-
tiveness in determining the subject of the interaction. Knowing the
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Figure 6: BystandAR effectiveness across the two groups of

eye gaze and voice thresholds.

identity of the intended subject, we inspect every frame and record
whether the face of the subject was unobscured. If the eye gaze of
the AR device user was directed at the face of the subject, we expect
the face of the subject to be unobscured. If the eye gaze is directed
at the subject and the face remains obscured, we consider this a
failure. We compute the total number of subject faces properly
unobscured compared to the total number of subject faces as the
subject availability rate.

Finally, in order to measure performance (in terms of frame rate),
we separately calculate the FPS of the prototype as it runs on the
Microsoft HoloLens 2. Each FPS calculation is done over a testing
period of 3 minutes with the prototype obscuring bystanders in
each frame in order to simulate a third-party application requesting
visual data.

7.3 Effectiveness of BystandAR

Camera Data. We evaluate how well BystandAR, using eye gaze
and voice data from the user, protects bystanders from DeepFace
face detection on both camera and depth frames captured by the
HoloLens 2’s onboard camera.

We compare the two groups of eye gaze and simultaneous eye
gaze and voice thresholds, Group 1 (50% gaze and 30% gaze/voice)
and Group 2 (25% gaze and 15% gaze/voice), to determine which
is ideal for BystandAR effectiveness. Fig. 6 illustrates the tradeoff
in bystander privacy protection between the two groups. Lower
thresholds result in lower rates of bystander privacy protection but
a higher subject availability rate. Specifically, the impact of a lower
threshold on bystander protection rate is marginal (about 1%), and
bystander protection rates of both two threshold options were high
(99.32% and 98.14% for Groups 1 and 2, respectively). In terms of
subject availability rate, the lower thresholds can improve it by
about 2.6%, from 93.63% to 96.27%. In our system, we use the lower
thresholds (used in Group 2) as the default option since it provides
a more balanced performance for both subject and bystanders.

Depth Data. BystandAR also provides bystander protection on
depth frames. For each frame, using the established face detections
and their label as a “bystander” or a “subject”, we obscure faces
using a depth mask that is the same as the depth levels surrounding
the detection. This provides the plateau effect mentioned in §5.
While the HoloLens 2’s depth data was insufficiently detailed to
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use existing depth-based face detection methods, we verified that
every depth frame was obscured in the same way as its camera
frame counterpart.

Threshold Recommendation. Between Group 1 and Group
2 thresholds, we achieved comparable bystander protection rates,
with a 2.6% improvement in subject availability rates. For this rea-
son, we recommend the lower threshold of Group 2. With this in
mind, we conduct all following evaluations of BystandAR using
both gaze and simultaneous gaze and voice thresholds of 25% and
15%, respectively.

7.4 Comparison to Offline Solution

We compare the bystander protection rate between BystandAR
running in real-time and a highly accurate offline bystander de-
tection model [12]. The offline approach extracts features from
each face and classifies it as bystander or subject with up to 94.3%
accuracy using Gradient Boosted Decision Tree (GBDT). The ex-
tracted features capture the 3D head pose, the angle between the
gaze direction and the camera, if the face was out of focus, and the
distance from the camera. The offline approach processed every
frame and could not feasibly be implemented on an AR device in
real-time.

Visual data from three additional scenarios were collected for a
robust comparison: a single bystander with no subject, a subject
with static bystanders, and a subject with bystanders that include
movement. The identified bystanders were positioned on either side
of the subject and both in front of or behind them for 60 seconds at
a time while camera frames from BystandAR were recorded. Raw
frames were also recorded for input to the offline model. Each of
the recording scenarios lasted for two minutes in total.

Table 1 presents the bystander protection rates between By-
standAR and GBDT. Our BystandAR prototype performed better
overall, with an overall rate of 94.1% compared to 82.3%. In the “No
Subject” scenario, one individual was present but did not interact
with the AR user. In this scenario, BystandAR had a perfect pro-
tection rate of 100%, while the GDBT model classified the face as a
subject in every frame, producing a protection rate of 0%. Bystan-
dAR detects the subject based on eye gaze and voice interaction
and does not suffer any false classification as a result. Accurate
bystander recognition is important in the absence of a subject, as
this is a typical scenario for AR users on a daily basis.

For scenarios that include a subject andmultiple bystanders, both
BystandAR and GBDT performed worse with a moving bystander.
While BystandAR had a 2% higher protection rate with static
bystanders, GDBT had a 3.3% higher rate with a moving bystander.
Rates from these two scenarios show that a moving bystander is
more difficult to identify and obscure, and an offline model applied
to every frame is only marginally better than BystandAR running
in real-time with an inference sampling interval of 8 frames.

7.5 Impact of Bystander Characteristics

As seen in Table 1, the effectiveness of BystandAR can vary based
on the characteristics of bystanders. We further evaluate the impact
of different numbers of bystanders in the scene and where motion
degrades protection rates.

Table 1: An evaluation of BystandAR against an offline

bystander detection model. The protection rate was highest

for BystandAR when images contain no subject and static

bystanders, while the offline model performed marginally

better with a moving bystander.

Scenario GBDT[12]

Protection Rate

BystandAR

Protection Rate

No Subject 0% 100%
Static Bystanders 95.3% 97.3%
Moving Bystander 91.6% 88.3%
Overall 82.3% 94.1%

Bystander 
moving 
laterally

Figure 7: Bystander protection rates of BystandAR over a

10-second average. The inset box highlights a drop in pro-

tection rates during large bystander movement, but overall

performance is maintained for the majority of the data.

The bystander protection rates across sessions with one, two,
and three bystanders were computed from the procedure described
in §7.1. We found average protection rates were the highest for
three bystanders (99.26%), the median for two bystanders (98.74%),
and the lowest for one bystander (98.30%). Overall, we found that
increasing numbers of bystanders had a negligible impact on by-
stander protection.

Next, we evaluate BystandAR results temporally based on the
motion level of bystanders. We identified data collection sessions
where the bystander(s) made large movements, defined as move-
ments from one side of the user’s FOV to the other. In the tests with
this motion, BystandAR protected the visual data of bystanders in
98.91% of frames. For tests where the bystanders remained static,
we found a protection rate of 98.77%. Additionally, Fig. 7 shows a
single test run and the impact that dramatic bystander movement
had on the protection rate. Both the figure and the aggregate re-
sults show the minimal impact bystander movement had during
our testing, but we further discuss situations where this result may
differ in §8 (BystandAR Limitations).

7.6 Effect of BystandAR on Bystander

Perceptions of Privacy

Following the completion of testing, each participant was asked to
complete a brief survey designed to investigate the effect Bystan-
dAR has on bystander perception of privacy. Each respondent was
first presented with a camera and a depth frame showing a subject,
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Figure 8: The distribution of the Likert responses for the

bystander perception survey across the unmodified frames

(Control Frames), the frameswith example exploitation from

DeepFace (Exploitation Examples), and the frames from By-

standAR (Protected Frames).

and two bystanders from a user’s point of view. The respondent
was asked to assume they were one of the two bystanders and was
then asked to rate their comfort level with this information being
made available to a third-party application on a Likert scale of one
to five with one being “Extremely Uncomfortable” and five being
“Extremely Comfortable”.

The respondents were then presented with two additional sets
of images, one using added DeepFace inference results, and the
other after BystandAR obscured the bystander faces in the camera
and depth frame. For the protected set, respondents were told that
the image was protected from exploitation like DeepFace inference,
but also to assume this system was less than perfect. They were
then asked to rate their comfort level for each. Fig. 8 shows the
aggregated results of this survey. We further discuss these results
in §8 (Bystander Perceptions).

7.7 Overhead of BystandAR

Using an inference sampling interval of 8 frames, BystandAR runs
at 52.6 FPS while not being required to obscure frames for release
to a third-party application. In fact, this method is likely to be
the most widely used if the device is not running an application
that requires camera or depth frames. In this mode, BystandAR
still collects raw images and obscures faces according to the by-
stander/subject detection described in §5. It does not, however,
apply any masks to any output images. This frame rate is compara-
ble to the HoloLens 2’s recommended 60 FPS (when not capturing
media frames) as suggested by Microsoft [40]. When the prototype
is configured to release obscured frames, BystandAR achieves 33.6
FPS. Such a drop in frame rate is expected for our prototype, as
Microsoft’s standard sensor data logging API states that frame rates
will drop to around 30 FPS [47]. We note here that BystandAR
would switch between offloading frames and not based on whether
a third-party application was requesting them.

To stress test our system, we also ran tests using an inference
sampling interval of 1 frame, meaning every captured camera frame
was used for inference. While not obscuring frames (i.e., simulating
running while no third-party application is requesting frames), the
prototype runs at 15.2 FPS; while obscuring frames, the prototype
runs at 11.5 FPS. This significant drop shows the problems with
per-frame inference as stated in §4 as both values are well below

Table 2: A summary of BystandAR’s impact on theHoloLens

2’s system resources, compared to device idle.

Total System

Load

Avg. CPU

Usage

Avg. GPU

Usage

System

Memory

Power

Util.

w/BystandAR 72% 0% 2.8 GB 68%
System Idle 45% 0% 2.2 GB 61%

any thresholds recommended by Microsoft for usable frame rates
as a result of inferring on every frame.

Finally, Table 2 shows a breakdown of BystandAR impacts on
the system resources of the HoloLens 2, as compared to the device’s
idle load. As a third-party application, BystandAR increases the
CPU load on the HoloLens 2 by 27%, with minimal increases in
memory footprint and power consumption. Also, given the 7%
increase in power utilization, we project a roughly 12-15 minute
decrease in the 2-3 hour expected battery life of the Microsoft
HoloLens 2 [44]. We believe that BystandAR would need to be
implemented at the OS level, as discussed in §8, reducing these
requirements.

8 Discussion

Scope. BystandAR is designed to protect bystanders (and make
subjects available) in interpersonal interactions. Scenarios such as
jogging, where the user is not making meaningful contact and mov-
ing quickly would be less advantageous for our system. However,
the impact of the speed of the user or bystander’s movement can
also be mitigated, as discussed later in this section.

Bystander Perceptions. As shown in Fig. 8, BystandAR in-
creases bystander confidence in the protection of their visual infor-
mation in the presence of AR devices. Even when told that such a
system may not be completely successful in all use case scenarios,
participants were generally more comfortable with a third-party ap-
plication having access to their visual data, assuming that a system
such as BystandAR had protected their privacy first. We believe
that systems such as BystandAR are even more effective at increas-
ing perceptions of privacy when bystanders are familiar with the
potential threats as well as the protection provided.

OS-level Implementation. In the current demonstration pro-
totype, BystandAR is implemented as a third-party application
running on the Microsoft HoloLens 2’s Windows Holographic OS.
On the HoloLens 2, only one AR application is allowed to run at
a time. BystandAR cannot intercept and obscure frames as a sole
third-party application. An assumption stated in multiple areas of
this work is that, if ever implemented on a production system, By-
standAR would need to be implemented at the OS level. This could
add challenges, such as how and when to update inference models
used by core OS processes, as was required during the COVID-19
pandemic [10]. This also provides some advantages for efficiency,
as toolkits and APIs such as MRTK [48] might not be necessary. We
do not investigate this further but leave this for future work.

Performance in Multi-user AR scenarios. As part of our test-
ing design, we also sought to evaluate the effectiveness of Bystan-
dAR if the subject was also an AR device user. For this, we designed
a second test that uses Microsoft’s Azure Spatial Anchors [41] to
share an absolute understanding of a physical space. The users
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were required to collaborate by building a block structure while
the application synchronized the location of their blocks on a cloud
game server created by Photon Unity Networking [54]. The chosen
model, FaceDetector [43], proved to be unreliable when detecting
the faces of “subjects” wearing AR devices but just as reliable for
device-less bystanders as expected. Models such as these can be
retrained to identify faces with AR devices, similar to the case
in the recent pandemic [10], but we believe that training models
specifically for this purpose is beyond the scope of our work.

BystandAR Limitations. BystandAR is built around the idea
that per-frame inference is not necessary to create a reliable system.
This is grounded in the fact that face movement, like movement
in all media capture, is replicated with a series of frames giving
the illusion of actual movement. Faces, people, things, etc., are not
“moving” in videos, they are merely shifting in relative position
across every frame. We believe that, if the inference rate is fast
enough, the bystander/subject face cannot move outside of the
obscuration between inferences. However, this does have a limit.
For example, at a frame rate of 52 FPS and an inference sampling
interval of 8, like BystandAR, an inference occurs about every 154
milliseconds. Given an average face width of 0.15 meters [45], a
face at the center of an obscuration box must move 0.15 meters in
154 milliseconds to evade the box and be fully revealed, which leads
to the following speed: 0.15 meters

0.154 seconds = 0.97 m/s. Given this speed,
a face could elude the inference rate and be unprotected. Even in
testing, of the small number of bystander faces exposed, about 50%
were due to movement. This can be ameliorated through more
rapid inference at the cost of lower frame rates. More advanced and
powerful AR devices in the future can allow more rapid inference
with less (if any) frame rate degradation.

BystandAR is designed to work in a variety of different inter-
personal situations. For instance, we asked bystanders to stand, sit,
move, or remain still during the various tests conducted. However,
we never asked a bystander to move in front of the subject during
testing. As the bystander’s face would be recognized as a face that
had not yet met the thresholds of eye/voice contact to be labeled a
“subject”, this face would be obscured in any output image. If this
face was directly in front of the subject, BystandAR would obscure
both faces and temporarily render the subject unavailable in the
image for as long as this occurred. Additionally, BystandAR works
on the principle that only one subject should be revealed at once.
While BystandAR is capable of classifying more than one face as
a subject, we only reveal the face of the subject when the user’s
eye gaze intersects with the subject’s face. This could be altered to
allow both subjects’ faces.

Another limitation comes when we consider a malicious user.
BystandAR is built with the natural dynamics of human eye and
voice contact in mind. Given the social barriers to staring at persons
not part of an interaction, shown in §4, we also believe that the risk
of users unintentionally staring at the exposed face of a bystander
is possible but limited. However, if the user intends to expose the
face of a bystander without them being part of an AR interaction,
they can certainly choose to keep eye contact on an exposed face
to prevent obscuration by the system. This would override the
assumptions made about normal human eye and voice contact. It
would also be noticeable to the bystander and other parties that a

person not involved in an interaction or conversation was staring
at a seemingly random person. We present BystandAR not as the
perfect solution, but rather as an example of an on-device, context-
enabled method to further bystander protection in AR systems.

9 Conclusion

In this work, we harnessed the dynamics of human interaction to
improve bystander visual data protection in AR devices by creating
a novel system called BystandAR. This is achieved on-device while
maintaining usable frame rates on AR devices. We believe that this
work expands the understanding of the capability of modern AR
devices to protect bystander privacy and to further the trust of
bystanders that their privacy is protected, using unique capabilities
that only these exciting, advanced AR devices possess.
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